Explanation-based learning:A problem solving perspective
作者:
摘要
This article outlines explanation-based learning (EBL) and its role in improving problem solving performance through experience. Unlike inductive systems, which learn by abstracting common properties from multiple examples, EBL systems explain why a particular example is an instance of a concept. The explanations are then converted into operational recognition rules. In essence, the EBL approach is analytical and knowledge-intensive, whereas inductive methods are empirical and knowledge-poor. This article focuses on extensions of the basic EBL method and their integration with the prodigy problem solving system. prodigy's EBL method is specifically designed to acquire search control rules that are effective in reducing total search time for complex task domains. Domain-specific search control rules are learned from successful problem solving decisions, costly failures, and unforeseen goal interactions. The ability to specify multiple learning strategies in a declarative manner enables EBL to serve as a general technique for performance improvement. prodigy's EBL method is analyzed, illustrated with several examples and performance results, and compared with other methods for integrating EBL and problem solving.
论文关键词:
论文评审过程:Available online 11 February 2003.
论文官网地址:https://doi.org/10.1016/0004-3702(89)90047-7