Task-dependent qualitative domain abstraction
作者:
摘要
Automated problem-solving for engineered devices is based on models that capture the essential aspects of the behavior. In this paper, we deal with the problem of automatically abstracting behavior models such that their level of granularity is as coarse as possible, but still sufficiently detailed to carry out a given behavioral prediction or diagnostic task. A task is described by a behavior model, as composed from a library, a specified granularity of the possible observations, and a specified granularity of the desired results. The goal of task-dependent qualitative domain abstraction is to determine maximal partitions for the variables' domains (termed qualitative values) that retain all the necessary distinctions. We present a formalization of this problem within a relational (constraint-based) framework, and devise solutions to automatically determine qualitative values for a device model. The results enhance the ability to use a behavior model of a device as a common basis to support different tasks along its life cycle.
论文关键词:Model-based systems,Qualitative reasoning,Domain abstraction
论文评审过程:Received 20 November 2001, Accepted 21 January 2004, Available online 15 December 2004.
论文官网地址:https://doi.org/10.1016/j.artint.2004.01.005