On probabilistic inference by weighted model counting
作者:
Highlights:
•
摘要
A recent and effective approach to probabilistic inference calls for reducing the problem to one of weighted model counting (WMC) on a propositional knowledge base. Specifically, the approach calls for encoding the probabilistic model, typically a Bayesian network, as a propositional knowledge base in conjunctive normal form (CNF) with weights associated to each model according to the network parameters. Given this CNF, computing the probability of some evidence becomes a matter of summing the weights of all CNF models consistent with the evidence. A number of variations on this approach have appeared in the literature recently, that vary across three orthogonal dimensions. The first dimension concerns the specific encoding used to convert a Bayesian network into a CNF. The second dimensions relates to whether weighted model counting is performed using a search algorithm on the CNF, or by compiling the CNF into a structure that renders WMC a polytime operation in the size of the compiled structure. The third dimension deals with the specific properties of network parameters (local structure) which are captured in the CNF encoding. In this paper, we discuss recent work in this area across the above three dimensions, and demonstrate empirically its practical importance in significantly expanding the reach of exact probabilistic inference. We restrict our discussion to exact inference and model counting, even though other proposals have been extended for approximate inference and approximate model counting.
论文关键词:Bayesian networks,Exact inference,Weighted model counting,Compilation
论文评审过程:Received 25 August 2006, Revised 22 July 2007, Accepted 5 November 2007, Available online 13 November 2007.
论文官网地址:https://doi.org/10.1016/j.artint.2007.11.002