Modelling and solving temporal reasoning as propositional satisfiability

作者:

Highlights:

摘要

Representing and reasoning about time dependent information is a key research issue in many areas of computer science and artificial intelligence. One of the best known and widely used formalisms for representing interval-based qualitative temporal information is Allen's interval algebra (IA). The fundamental reasoning task in IA is to find a scenario that is consistent with the given information. This problem is in general NP-complete.In this paper, we investigate how an interval-based representation, or IA network, can be encoded into a propositional formula of Boolean variables and/or predicates in decidable theories. Our task is to discover whether satisfying such a formula can be more efficient than finding a consistent scenario for the original problem. There are two basic approaches to modelling an IA network: one represents the relations between intervals as variables and the other represents the end-points of each interval as variables. By combining these two approaches with three different Boolean satisfiability (SAT) encoding schemes, we produced six encoding schemes for converting IA to SAT. In addition, we also showed how IA networks can be formulated into satisfiability modulo theories (SMT) formulae based on the quantifier-free integer difference logic (QF-IDL). These encodings were empirically studied using randomly generated IA problems of sizes ranging from 20 to 100 nodes. A general conclusion we draw from these experimental results is that encoding IA into SAT produces better results than existing approaches. More specifically, we show that the new point-based 1-D support SAT encoding of IA produces consistently better results than the other alternatives considered. In comparison with the six different SAT encodings, the SMT encoding came fourth after the point-based and interval-based 1-D support schemes and the point-based direct scheme. Further, we observe that the phase transition region maps directly from the IA encoding to each SAT or SMT encoding, but, surprisingly, the location of the hard region varies according to the encoding scheme. Our results also show a fixed performance ranking order over the various encoding schemes.

论文关键词:Temporal reasoning,Interval Algebra,Satisfiability,Satisfiability modulo theories,DPLL,Search

论文评审过程:Received 24 November 2006, Revised 2 June 2008, Accepted 11 June 2008, Available online 19 June 2008.

论文官网地址:https://doi.org/10.1016/j.artint.2008.06.003