Label ranking by learning pairwise preferences
作者:
Highlights:
•
摘要
Preference learning is an emerging topic that appears in different guises in the recent literature. This work focuses on a particular learning scenario called label ranking, where the problem is to learn a mapping from instances to rankings over a finite number of labels. Our approach for learning such a mapping, called ranking by pairwise comparison (RPC), first induces a binary preference relation from suitable training data using a natural extension of pairwise classification. A ranking is then derived from the preference relation thus obtained by means of a ranking procedure, whereby different ranking methods can be used for minimizing different loss functions. In particular, we show that a simple (weighted) voting strategy minimizes risk with respect to the well-known Spearman rank correlation. We compare RPC to existing label ranking methods, which are based on scoring individual labels instead of comparing pairs of labels. Both empirically and theoretically, it is shown that RPC is superior in terms of computational efficiency, and at least competitive in terms of accuracy.
论文关键词:Preference learning,Ranking,Pairwise classification,Constraint classification
论文评审过程:Received 21 January 2008, Revised 14 July 2008, Accepted 8 August 2008, Available online 15 August 2008.
论文官网地址:https://doi.org/10.1016/j.artint.2008.08.002