Conformant plans and beyond: Principles and complexity
作者:
Highlights:
•
摘要
Conformant planning is used to refer to planning for unobservable problems whose solutions, like classical planning, are linear sequences of operators called linear plans. The term ‘conformant’ is automatically associated with both the unobservable planning model and with linear plans, mainly because the only possible solutions for unobservable problems are linear plans. In this paper we show that linear plans are not only meaningful for unobservable problems but also for partially-observable problems. In such case, the execution of a linear plan generates observations from the environment which must be collected by the agent during the execution of the plan and used at the end in order to determine whether the goal had been achieved or not; this is the typical case in problems of diagnosis in which all the actions are knowledge-gathering actions.Thus, there are substantial differences about linear plans for the case of unobservable or fully-observable problems, and for the case of partially-observable problems: while linear plans for the former model must conform with properties in state space, linear plans for partially-observable problems must conform with properties in belief space. This differences surface when the problems are allowed to express epistemic goals and conditions using modal logic, and place the plan-existence decision problem in different complexity classes.Linear plans is one extreme point in a discrete spectrum of solution forms for planning problems. The other extreme point is contingent plans in which there is a branch point for every possible observation at each time step, and thus the number of branch points is not bounded a priori. In the middle of the spectrum, there are plans with a bounded number of branch points. Thus, linear plans are plans with zero branch points and contingent plans are plans with unbounded number of branch points.In this work, we lay down foundations and principles for the general treatment of linear plans and plans of bounded branching, and provide exact complexity results for novel decision problems. We also show that linear plans for partially-observable problems are not only of theoretical interest since some challenging real-life problems can be dealt with them.
论文关键词:Planning,Complexity of planning,Partially-observable planning,Non-deterministic planning,Modal logic
论文评审过程:Received 16 September 2008, Revised 29 October 2009, Accepted 29 October 2009, Available online 3 November 2009.
论文官网地址:https://doi.org/10.1016/j.artint.2009.11.001