Bi-goal evolution for many-objective optimization problems
作者:
摘要
This paper presents a meta-objective optimization approach, called Bi-Goal Evolution (BiGE), to deal with multi-objective optimization problems with many objectives. In multi-objective optimization, it is generally observed that 1) the conflict between the proximity and diversity requirements is aggravated with the increase of the number of objectives and 2) the Pareto dominance loses its effectiveness for a high-dimensional space but works well on a low-dimensional space. Inspired by these two observations, BiGE converts a given multi-objective optimization problem into a bi-goal (objective) optimization problem regarding proximity and diversity, and then handles it using the Pareto dominance relation in this bi-goal domain. Implemented with estimation methods of individuals' performance and the classic Pareto nondominated sorting procedure, BiGE divides individuals into different nondominated layers and attempts to put well-converged and well-distributed individuals into the first few layers. From a series of extensive experiments on four groups of well-defined continuous and combinatorial optimization problems with 5, 10 and 15 objectives, BiGE has been found to be very competitive against five state-of-the-art algorithms in balancing proximity and diversity. The proposed approach is the first step towards a new way of addressing many-objective problems as well as indicating several important issues for future development of this type of algorithms.
论文关键词:Evolutionary multi-objective optimization,Many-objective optimization,Proximity,Diversity,Bi-goal evolution
论文评审过程:Received 22 August 2014, Revised 14 June 2015, Accepted 20 June 2015, Available online 3 July 2015, Version of Record 16 July 2015.
论文官网地址:https://doi.org/10.1016/j.artint.2015.06.007