H-index manipulation by merging articles: Models, theory, and experiments
作者:
摘要
An author's profile on Google Scholar consists of indexed articles and associated data, such as the number of citations and the H-index. The author is allowed to merge articles; this may affect the H-index. We analyze the (parameterized) computational complexity of maximizing the H-index using article merges. Herein, to model realistic manipulation scenarios, we define a compatibility graph whose edges correspond to plausible merges. Moreover, we consider several different measures for computing the citation count of a merged article. For the measure used by Google Scholar, we give an algorithm that maximizes the H-index in linear time if the compatibility graph has constant-size connected components. In contrast, if we allow to merge arbitrary articles (that is, for compatibility graphs that are cliques), then already increasing the H-index by one is NP-hard. Experiments on Google Scholar profiles of AI researchers show that the H-index can be manipulated substantially only if one merges articles with highly dissimilar titles.
论文关键词:Citation index,Hirsch index,Parameterized complexity,Exact algorithms,AI's 10 to watch
论文评审过程:Received 9 March 2016, Revised 26 July 2016, Accepted 5 August 2016, Available online 10 August 2016, Version of Record 25 August 2016.
论文官网地址:https://doi.org/10.1016/j.artint.2016.08.001