Hierarchical semi-Markov conditional random fields for deep recursive sequential data
作者:
摘要
We present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of linear-chain conditional random fields to model deep nested Markov processes. It is parameterised as a conditional log-linear model and has polynomial time algorithms for learning and inference. We derive algorithms for partially-supervised learning and constrained inference. We develop numerical scaling procedures that handle the overflow problem. We show that when depth is two, the HSCRF can be reduced to the semi-Markov conditional random fields. Finally, we demonstrate the HSCRF on two applications: (i) recognising human activities of daily living (ADLs) from indoor surveillance cameras, and (ii) noun-phrase chunking. The HSCRF is capable of learning rich hierarchical models with reasonable accuracy in both fully and partially observed data cases.
论文关键词:Deep nested sequential processes,Hierarchical semi-Markov conditional random field,Partial labelling,Constrained inference,Numerical scaling
论文评审过程:Received 20 January 2015, Revised 12 February 2017, Accepted 14 February 2017, Available online 24 February 2017, Version of Record 3 March 2017.
论文官网地址:https://doi.org/10.1016/j.artint.2017.02.003