Overlapping layered learning

作者:

摘要

Layered learning is a hierarchical machine learning paradigm that enables learning of complex behaviors by incrementally learning a series of sub-behaviors. A key feature of layered learning is that higher layers directly depend on the learned lower layers. In its original formulation, lower layers were frozen prior to learning higher layers. This article considers a major extension to the paradigm that allows learning certain behaviors independently, and then later stitching them together by learning at the “seams” where their influences overlap. The UT Austin Villa 2014 RoboCup 3D simulation team, using such overlapping layered learning, learned a total of 19 layered behaviors for a simulated soccer-playing robot, organized both in series and in parallel. To the best of our knowledge this is more than three times the number of layered behaviors in any prior layered learning system. Furthermore, the complete learning process is repeated on four additional robot body types, showcasing its generality as a paradigm for efficient behavior learning. The resulting team won the RoboCup 2014 championship with an undefeated record, scoring 52 goals and conceding none. This article includes a detailed experimental analysis of the team's performance and the overlapping layered learning approach that led to its success.

论文关键词:Layered learning,Reinforcement learning,Robot soccer,CMA-ES,Robot skill learning,Hierarchical machine learning

论文评审过程:Received 13 April 2017, Accepted 11 September 2017, Available online 13 October 2017, Version of Record 13 October 2017.

论文官网地址:https://doi.org/10.1016/j.artint.2017.09.001