Gelfond–Zhang aggregates as propositional formulas

作者:

摘要

Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide.

论文关键词:Aggregates,Answer Set Programming

论文评审过程:Received 24 May 2018, Revised 20 September 2018, Accepted 8 October 2018, Available online 15 February 2019, Version of Record 28 February 2019.

论文官网地址:https://doi.org/10.1016/j.artint.2018.10.007