Probabilistic logic

作者:

Highlights:

摘要

Because many artificial intelligence applications require the ability to reason with uncertain knowledge, it is important to seek appropriate generalizations of logic for that case. We present here a semantical generalization of logic in which the truth values of sentences are probability values (between 0 and 1). Our generalization applies to any logical system for which the consistency of a finite set of sentences can be established. The method described in the present paper combines logic with probability theory in such a way that probabilistic logical entailment reduces to ordinary logical entailment when the probabilities of all sentences are either 0 or 1.

论文关键词:

论文评审过程:Available online 10 February 2003.

论文官网地址:https://doi.org/10.1016/0004-3702(86)90031-7