Planning as search: A quantitative approach

作者:

Highlights:

摘要

We present the thesis that planning can be viewed as problem-solving search using subgoals, macro-operators, and abstraction as knowledge sources. Our goal is to quantify problem-solving performance using these sources of knowledge. New results include the identification of subgoal distance as a fundamental measure of problem difficulty, a multiplicative time-space tradeoff for macro-operators, and an analysis of abstraction which concludes that abstraction hierarchies can reduce exponential problems to linear complexity.

论文关键词:

论文评审过程:Available online 10 February 2003.

论文官网地址:https://doi.org/10.1016/0004-3702(87)90051-8