Complexity of certain decision problems about congruential languages

作者:

Highlights:

摘要

Given an arbitrary finite Church-Rosser Thue system S, it is shown that the question of whether a given congruence class is finite is undecidable, and the question of whether every congruence class is finite is not even semidecidable (in fact, Π2-complete). It is shown that the question of whether a given (resp. every) congruence class is a context-free language is at least as hard. Also, given a finite rewriting system over a commutative monoid, the question of whether every congruence class is finite is shown to be tractable. This contrasts with the known result that the question of whether a given congruence class is finite requires space at least exponential in the square root of the input length.

论文关键词:

论文评审过程:Received 4 April 1984, Revised 20 November 1984, Available online 2 December 2003.

论文官网地址:https://doi.org/10.1016/0022-0000(85)90051-0