Generic Separations
作者:
Highlights:
•
摘要
In 1987, Blum and Impagliazzo, using techniques of Hartmanis and Hemachandra and Rackoff, showed that ifP=NPthenP(G)=NP(G)∩coNP(G)=UP(G), whereGis a generic oracle. They leave open the question as to whether these collapses occur at higher levels of the polynomial-time hierarchy, i.e.,Δpk(G)=Σpk(G)∩Πpk(G)=UΔpk(G) fork⩾2. Here we give a negative answer to these questions. In fact, we demonstrate that, relative to any generic oracleGand for everyk⩾2, there exists a tally set inUΔpk(G)∩Πpk(G) but not inΔpk(G) by showing an exponential lower bound of a certain type of families of constant-depth circuits. An immediate corollary is that generic oracles separateΣpk∩ΠpkandΔpk. We also show that related results hold for type-2 complexity.
论文关键词:
论文评审过程:Received 28 September 1994, Revised 15 September 1995, Available online 25 May 2002.
论文官网地址:https://doi.org/10.1006/jcss.1996.0015