Natural Proofs

作者:

Highlights:

摘要

We introduce the notion ofnaturalproof. We argue that the known proofs of lower bounds on the complexity of explicit Boolean functions in nonmonotone models fall within our definition of natural. We show, based on a hardness assumption, that natural proofs can not prove superpolynomial lower bounds for general circuits. Without the hardness assumption, we are able to show that they can not prove exponential lower bounds (for general circuits) for the discrete logarithm problem. We show that the weaker class ofAC0-natural proofs which is sufficient to prove the parity lower bounds of Furst, Saxe, and Sipser, Yao, and Håstad is inherently incapable of proving the bounds of Razborov and Smolensky. We give some formal evidence that natural proofs are indeed natural by showing that every formal complexity measure, which can prove superpolynomial lower bounds for a single function, can do so for almost all functions, which is one of the two requirements of a natural proof in our sense.

论文关键词:

论文评审过程:Received 1 December 1994, Revised 2 December 1996, Available online 25 May 2002.

论文官网地址:https://doi.org/10.1006/jcss.1997.1494