Learning with Unreliable Boundary Queries
作者:
Highlights:
•
摘要
We introduce a model for learning from examples and membership queries in situations where the boundary between positive and negative examples is somewhat ill-defined. In our model, queries near the boundary of a target concept may receive incorrect or “don't care” responses, and the distribution of examples has zero probability mass on the boundary region. The motivation behind our model is that in many cases the boundary between positive and negative examples is complicated or “fuzzy.” However, one may still hope to learn successfully, because the typical examples that one sees do not come from that region. We present several positive results in this new model. We show how to learn the intersection of two arbitrary halfspaces when membership queries near the boundary may be answered incorrectly. Our algorithm is an extension of an algorithm of Baum (1990, 1991) that learns the intersection of two halfspaces whose bounding planes pass through the origin in the PAC-with-membership-queries model. We also describe algorithms for learning several subclasses of monotone DNF formulas.
论文关键词:
论文评审过程:Received 17 November 1995, Revised 30 June 1997, Available online 25 May 2002.
论文官网地址:https://doi.org/10.1006/jcss.1997.1559