A Lower Bound for Primality
作者:
Highlights:
•
摘要
Recent work by Bernasconi, Damm, and Shparlinski showed that the set of square-free numbers is not in AC0 and raised as an open question whether similar (or stronger) lower bounds could be proved for the set of prime numbers. We show that the Boolean majority function is AC0-Turing reducible to the set of prime numbers (represented in binary). From known lower bounds on M (due to Razborov and Smolensky) we conclude that primality cannot be tested in AC0[p] for any prime p. Similar results are obtained for the set of square-free numbers and for the problem of computing the greatest common divisor of two numbers.
论文关键词:
论文评审过程:Received 17 June 1999, Revised 14 March 2000, Available online 25 May 2002.
论文官网地址:https://doi.org/10.1006/jcss.2000.1725