Learning languages from positive data and negative counterexamples

作者:

Highlights:

摘要

In this paper we introduce a paradigm for learning in the limit of potentially infinite languages from all positive data and negative counterexamples provided in response to the conjectures made by the learner. Several variants of this paradigm are considered that reflect different conditions/constraints on the type and size of negative counterexamples and on the time for obtaining them. In particular, we consider the models where (1) a learner gets the least negative counterexample; (2) the size of a negative counterexample must be bounded by the size of the positive data seen so far; (3) a counterexample can be delayed. Learning power, limitations of these models, relationships between them, as well as their relationships with classical paradigms for learning languages in the limit (without negative counterexamples) are explored. Several surprising results are obtained. In particular, for Gold's model of learning requiring a learner to syntactically stabilize on correct conjectures, learners getting negative counterexamples immediately turn out to be as powerful as the ones that do not get them for indefinitely (but finitely) long time (or are only told that their latest conjecture is not a subset of the target language, without any specific negative counterexample). Another result shows that for behaviorally correct learning (where semantic convergence is required from a learner) with negative counterexamples, a learner making just one error in almost all its conjectures has the “ultimate power”: it can learn the class of all recursively enumerable languages. Yet another result demonstrates that sometimes positive data and negative counterexamples provided by a teacher are not enough to compensate for full positive and negative data.

论文关键词:Computational learning theory,Inductive inference,Negative counterexamples,Learning in the limit

论文评审过程:Received 1 October 2004, Revised 24 January 2005, Available online 13 June 2007.

论文官网地址:https://doi.org/10.1016/j.jcss.2007.06.012