Reducing mechanism design to algorithm design via machine learning
作者:
Highlights:
•
摘要
We use techniques from sample-complexity in machine learning to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a broad class of revenue-maximizing pricing problems. Our reductions imply that for these problems, given an optimal (or β-approximation) algorithm for an algorithmic pricing problem, we can convert it into a (1+ϵ)-approximation (or β(1+ϵ)-approximation) for the incentive-compatible mechanism design problem, so long as the number of bidders is sufficiently large as a function of an appropriate measure of complexity of the class of allowable pricings. We apply these results to the problem of auctioning a digital good, to the attribute auction problem which includes a wide variety of discriminatory pricing problems, and to the problem of item-pricing in unlimited-supply combinatorial auctions. From a machine learning perspective, these settings present several challenges: in particular, the “loss function” is discontinuous, is asymmetric, and has a large range. We address these issues in part by introducing a new form of covering-number bound that is especially well-suited to these problems and may be of independent interest.
论文关键词:Mechanism design,Machine learning,Sample complexity,Profit maximization,Unlimited supply,Digital good auction,Attribute auctions,Combinatorial auctions,Structural risk minimization,Covering numbers
论文评审过程:Received 14 September 2006, Revised 11 July 2007, Available online 29 August 2007.
论文官网地址:https://doi.org/10.1016/j.jcss.2007.08.002