Resource recommendation in social annotation systems: A linear-weighted hybrid approach
作者:
Highlights:
•
摘要
Social annotation systems enable the organization of online resources with user-defined keywords. Collectively these annotations provide a rich information space in which users can discover resources, organize and share their finds, and connect to other users with similar interests. However, the size and complexity of these systems can lead to information overload and reduced utility for users. For these reasons, researchers have sought to apply the techniques of recommender systems to deliver personalized views of social annotation systems. To date, most efforts have concentrated on the problem of tag recommendation – personalized suggestions for possible annotations. Resource recommendation has not received the same systematic evaluation, in part because the task is inherently more complex. In this article, we provide a general formulation for the problem of resource recommendation in social annotation systems that captures these variants, and we evaluate two cases: basic resource recommendation and tag-specific resource recommendation. We also propose a linear-weighted hybrid framework for resource recommendation. Using six real-world datasets, we show that its integrative approach is essential for this recommendation task and provides the most adaptability given the varying data characteristics in different social annotation systems. We find that our algorithm is more effective than other more mathematically-complex techniques and has the additional advantages of flexibility and extensibility.
论文关键词:Resource recommendation,Social annotation system,Hybrid recommenders
论文评审过程:Received 29 April 2011, Revised 22 July 2011, Accepted 17 October 2011, Available online 2 November 2011.
论文官网地址:https://doi.org/10.1016/j.jcss.2011.10.006