How fast can we reach a target vertex in stochastic temporal graphs?

作者:

Highlights:

摘要

Temporal graphs abstractly model real-life inherently dynamic networks. Given a graph G, a temporal graph with G as the underlying graph is a sequence of subgraphs (snapshots) Gt of G, where t≥1. In this paper we study stochastic temporal graphs, i.e. stochastic processes G whose random variables are the snapshots of a temporal graph on G. A natural feature observed in various real-life scenarios is a memory effect in the appearance probabilities of particular edges; i.e. the probability an edge e∈E appears at time step t depends on its appearance (or absence) at the previous k steps. We study the hierarchy of models of memory-k, k≥0, in an edge-centric network evolution setting: every edge of G has its own independent probability distribution for its appearance over time. We thoroughly investigate the complexity of two naturally related, but fundamentally different, temporal path problems, called Minimum Arrival and Best Policy.

论文关键词:Temporal network,Stochastic temporal graph,Temporal path,#P-hard problem,Polynomial-time approximation scheme

论文评审过程:Received 19 September 2019, Revised 11 March 2020, Accepted 4 May 2020, Available online 28 May 2020, Version of Record 9 June 2020.

论文官网地址:https://doi.org/10.1016/j.jcss.2020.05.005