Tree-size bounded alternation

作者:

Highlights:

摘要

The size of an accepting computation tree of an alternating Turing machine (ATM) is introduced as a complexity measure. We present a number of applications of tree-size to the study of more traditional complexity classes. Tree-size on ATMs is shown to closely correspond to time on nondeterministic TMs and on nondeterministic auxiliary pushdown automata. One application of the later is a useful new characterization of the class of languages log-space-reducible to context-free languages. Surprising relationships with parallel-time complexity are also demonstrated. ATM computations using at most space S(n) and tree-size Z(n) (simultaneously) can be simulated in alternating space S(n) and time S(n) · log Z(n) (simultaneously). Several well-known simulations, e.g., Savitch's theorem, are special cases of this result. It also leads to improved parallel complexity bounds for many problems in terms of both time and number of “processors.” As one example we show that context-free language recognition in time O(log2 n) is possible on several parallel models. Further, this bound is achievable with only a polynomial number of processors, in contrast to all previously known sub-linear time CFL recognizers.

论文关键词:

论文评审过程:Received 15 October 1979, Revised 12 June 1980, Available online 2 December 2003.

论文官网地址:https://doi.org/10.1016/0022-0000(80)90036-7