All solutions of a system of recursion equations in infinite trees and other contraction theories
作者:
Highlights:
•
摘要
A system Σ of recursion equations is a finite set of equations ϕi = ti i = 1,…, n, where the expressions ti denote terms built from individual variables, “function constants,” and the “function variables” ϕ1,…,ϕn. An interpretation of such a system assigns a meaning to each function constant and a possible meaning to each individual and function variable. Standard interpretations have imposed an ordering on the class of possible “solutions” of Σ and only the least (or greatest) solution is found. In this paper contraction theories are defined and used as interpretations for Σ. Several known kinds of interpretations are shown to be contraction theories, including the collection of rooted labeled trees. No ordering is imposed on solutions in a contraction theory, but a metric is involved. All solutions of Σ in any contraction theory are described.
论文关键词:
论文评审过程:Received 12 March 1979, Revised 15 September 1981, Available online 2 December 2003.
论文官网地址:https://doi.org/10.1016/0022-0000(83)90041-7