Generating cubical complexes from image data and computation of the Euler number
作者:
Highlights:
•
摘要
A number of tasks in image processing and computer vision require the computation of certain topological characteristics of objects in a given image. In this paper, we introduce a new method based on the notion of the algebraic topology complex to compute the Euler number of a given object. First, we attach a cubical complex to the object of interest, then we associate an algebraic structure on which a number of simplifying operations preserving the topology but not necessarily the geometric nature of the complex are possible. This is a unifying dimension independent approach. We show that the Euler number can be obtained directly from the cubical structure or one can perform a collapsing operation that allows to reduce the given image to a lower dimension structure with equivalent topological properties. This reduced structure can be used in a further process, in particular, for the computation of the Euler number.
论文关键词:Feature extraction,Algebraic topology,Cubical complex,Collapsing,Euler number
论文评审过程:Received 23 February 2001, Accepted 16 October 2001, Available online 17 January 2002.
论文官网地址:https://doi.org/10.1016/S0031-3203(01)00238-2