Mass lesion detection with a fuzzy neural network
作者:
Highlights:
•
摘要
This paper presents a novel fuzzy neural network (FNN) approach to detect malignant mass lesions on mammograms. The FNN is a self-adjusting and adaptive system. It is simple in structure and easy to incorporate experts’ knowledge and fuzzified factors in the detection of malignant mass lesions on mammograms. The FNN has four layers. The first layer is the input layer consisting of 4 fuzzy neurons. The second layer has 4 ordinary neurons. The third layer consists of N maximum fuzzy neurons. The number of fuzzy neurons, N, in the third layer is determined during the training process and varies with the network parameters and data distribution. The fourth layer has 2 maximum fuzzy neurons and one competitive fuzzy neuron. Mammograms were obtained from the digital database for screening mammography, DDSM. Six-hundred and seventy regions of interest (ROIs) were extracted from 100 mammograms. All extracted ROIs were randomly divided into two sets: training and testing sets. The co-occurrence matrix of each ROI was computed. Textural features were calculated at sizes of 256×256 and 768×768, respectively. The feature differences at these two image sizes were computed for each feature. These feature differences are very discriminant in differentiating between malignant masses and normal tissues regardless of lesion shape, size, and subtlety. After training, the FNN can correctly detect all malignant masses on mammograms in the testing group. The true-positive fraction (TPF) is 0.92 when the number of false positives (FP) is 1.33 per mammogram and 1.0 when the FP is 2.15 per mammogram. The proposed approach will be very useful for breast cancer control.
论文关键词:Entropy,Uniformity,Contrast,Co-occurrence matrix,True positive (TP),False negative (FN)
论文评审过程:Received 30 June 2003, Revised 4 November 2003, Accepted 4 November 2003, Available online 28 January 2004.
论文官网地址:https://doi.org/10.1016/j.patcog.2003.11.002