Implementation of real-time constrained linear discriminant analysis to remote sensing image classification

作者:

Highlights:

摘要

In this paper, we investigate the practical implementation issues of the real-time constrained linear discriminant analysis (CLDA) approach for remotely sensed image classification. Specifically, two issues are to be resolved: (1) what is the best implementation scheme that yields lowest chip design complexity with comparable classification performance, and (2) how to extend CLDA algorithm for multispectral image classification. Two limitations about data dimensionality have to be relaxed. One is in real-time hyperspectral image classification, where the number of linearly independent pixels received for classification must be larger than the data dimensionality (i.e., the number of spectral bands) in order to generate a non-singular sample correlation matrix R for the classifier, and relaxing this limitation can help to resolve the aforementioned first issue. The other is in multispectral image classification, where the number of classes to be classified cannot be greater than the data dimensionality, and relaxing this limitation can help to resolve the aforementioned second issue. The former can be solved by introducing a pseudo inverse initiate of sample correlation matrix for R-1 adaptation, and the latter is taken care of by expanding the data dimensionality via the operation of band multiplication. Experiments on classification performance using these modifications are conducted to demonstrate their feasibility. All these investigations lead to a detailed ASIC chip design scheme for the real-time CLDA algorithm suitable to both hyperspectral and multispectral images. The proposed techniques to resolving these two dimensionality limitations are instructive to the real-time implementation of several popular detection and classification approaches in remote sensing image exploitation.

论文关键词:Real-time processing,Constrained linear discriminant analysis (CLDA),Classification,Hyperspectral imagery,Multispectral imagery

论文评审过程:Received 26 June 2003, Revised 26 July 2004, Accepted 15 September 2004, Available online 8 December 2004.

论文官网地址:https://doi.org/10.1016/j.patcog.2004.09.008