A multiobjective genetic algorithm for obtaining the optimal size of a recurrent neural network for grammatical inference
作者:
Highlights:
•
摘要
Grammatical inference has been extensively studied in recent years as a result of its wide field of application, and in turn, recurrent neural networks have proved themselves to be a good tool for grammatical inference. The learning algorithms for these neural networks, however, have been far less studied than those for feed-forward neural networks. Classical training methods for recurrent neural networks suffer from being trapped in local minimal and having a high computational time. In addition, selecting the optimal size of a neural network for a particular application is a difficult task. This suggests that the problems of developing methods to determine optimal topologies and new training algorithms should be studied.In this paper, we present a multi-objective evolutionary algorithm which is able to determine the optimal size of recurrent neural networks in any particular application. This is specially analyzed in the case of grammatical inference: in particular, we study how to establish the optimal size of a recurrent neural network in order to learn positive and negative examples in a certain language, and how to determine the corresponding automaton using a self-organizing map once the training has been completed.
论文关键词:Recurrent neural networks,Multiobjective genetic algorithm,Grammatical inference
论文评审过程:Accepted 17 March 2004, Available online 1 June 2005.
论文官网地址:https://doi.org/10.1016/j.patcog.2004.03.026