Efficient Legendre moment computation for grey level images

作者:

Highlights:

摘要

Legendre orthogonal moments have been widely used in the field of image analysis. Because their computation by a direct method is very time expensive, recent efforts have been devoted to the reduction of computational complexity. Nevertheless, the existing algorithms are mainly focused on binary images. We propose here a new fast method for computing the Legendre moments, which is not only suitable for binary images but also for grey level images. We first establish a recurrence formula of one-dimensional (1D) Legendre moments by using the recursive property of Legendre polynomials. As a result, the 1D Legendre moments of order p, Lp=Lp(0), can be expressed as a linear combination of Lp-1(1) and Lp-2(0). Based on this relationship, the 1D Legendre moments Lp(0) can thus be obtained from the arrays of L1(a) and L0(a), where a is an integer number less than p. To further decrease the computation complexity, an algorithm, in which no multiplication is required, is used to compute these quantities. The method is then extended to the calculation of the two-dimensional Legendre moments Lpq. We show that the proposed method is more efficient than the direct method.

论文关键词:Legendre moments,Fast algorithm,Recurrence formula,Grey level images

论文评审过程:Received 30 March 2004, Revised 24 August 2005, Accepted 24 August 2005, Available online 12 October 2005.

论文官网地址:https://doi.org/10.1016/j.patcog.2005.08.008