Directional features in online handwriting recognition

作者:

Highlights:

摘要

The selection of valuable features is crucial in pattern recognition. In this paper we deal with the issue that part of features originate from directional instead of common linear data. Both for directional and linear data a theory for a statistical modeling exists. However, none of these theories gives an integrated solution to problems, where linear and directional variables are to be combined in a single, multivariate probability density function. We describe a general approach for a unified statistical modeling, given the constraint that variances of the circular variables are small. The method is practically evaluated in the context of our online handwriting recognition system frog on hand and the so-called tangent slope angle feature. Recognition results are compared with two alternative modeling approaches. The proposed solution gives significant improvements in recognition accuracy, computational speed and memory requirements.

论文关键词:Feature selection,Directional data,Distribution on a circle,Multivariate semi-wrapped Gaussian distribution,Online handwriting recognition,UNIPEN online handwriting database

论文评审过程:Received 21 November 2003, Revised 24 March 2005, Accepted 11 May 2005, Available online 19 September 2005.

论文官网地址:https://doi.org/10.1016/j.patcog.2005.05.012