Locally linear metric adaptation with application to semi-supervised clustering and image retrieval
作者:
Highlights:
•
摘要
Many computer vision and pattern recognition algorithms are very sensitive to the choice of an appropriate distance metric. Some recent research sought to address a variant of the conventional clustering problem called semi-supervised clustering, which performs clustering in the presence of some background knowledge or supervisory information expressed as pairwise similarity or dissimilarity constraints. However, existing metric learning methods for semi-supervised clustering mostly perform global metric learning through a linear transformation. In this paper, we propose a new metric learning method that performs nonlinear transformation globally but linear transformation locally. In particular, we formulate the learning problem as an optimization problem and present three methods for solving it. Through some toy data sets, we show empirically that our locally linear metric adaptation (LLMA) method can handle some difficult cases that cannot be handled satisfactorily by previous methods. We also demonstrate the effectiveness of our method on some UCI data sets. Besides applying LLMA to semi-supervised clustering, we have also used it to improve the performance of content-based image retrieval systems through metric learning. Experimental results based on two real-world image databases show that LLMA significantly outperforms other methods in boosting the image retrieval performance.
论文关键词:Metric learning,Locally linear metric adaptation,Linear transformation,Semi-supervised clustering,Gradient method,Iterative majorization,Spectral method,UCI repository,Content-based image retrieval
论文评审过程:Received 28 July 2005, Revised 8 December 2005, Accepted 18 December 2005, Available online 3 February 2006.
论文官网地址:https://doi.org/10.1016/j.patcog.2005.12.012