The relative distance of key point based iris recognition

作者:

Highlights:

摘要

Iris recognition has received increasing attention in recent years as a reliable approach to human identification. This paper makes an attempt to analyze the local feature structure of iris texture information based on the relative distance of key points. When preprocessed, the annular iris is normalized into a rectangular block. Multi-channel 2-D Gabor filters are used to capture the iris texture. In every filtered sub-image, we extract the points that can represent the local texture most effectively in each channel. The barycenter of these points in each channel is called the key point and a group of key points are obtained. Then, the distance between the center of key points of each sub-image and every key point is called relative distance, which is regarded as the iris feature vector. Iris feature matching is based on the Euclidean distance. Experimental results on public and private databases show that the performance of the proposed method is encouraging.

论文关键词:Iris recognition,Key point,Relative distance,Gabor filter

论文评审过程:Received 20 September 2005, Revised 9 February 2006, Accepted 10 March 2006, Available online 30 May 2006.

论文官网地址:https://doi.org/10.1016/j.patcog.2006.03.008