Mean shift-based clustering
作者:
Highlights:
•
摘要
In this paper, a mean shift-based clustering algorithm is proposed. The mean shift is a kernel-type weighted mean procedure. Herein, we first discuss three classes of Gaussian, Cauchy and generalized Epanechnikov kernels with their shadows. The robust properties of the mean shift based on these three kernels are then investigated. According to the mountain function concepts, we propose a graphical method of correlation comparisons as an estimation of defined stabilization parameters. The proposed method can solve these bandwidth selection problems from a different point of view. Some numerical examples and comparisons demonstrate the superiority of the proposed method including those of computational complexity, cluster validity and improvements of mean shift in large continuous, discrete data sets. We finally apply the mean shift-based clustering algorithm to image segmentation.
论文关键词:Kernel functions,Mean shift,Robust clustering,Generalized Epanechnikov kernel,Bandwidth selection,Parameter estimation,Mountain method,Noise
论文评审过程:Received 3 June 2006, Revised 3 February 2007, Accepted 19 February 2007, Available online 5 March 2007.
论文官网地址:https://doi.org/10.1016/j.patcog.2007.02.006