View independent face detection based on horizontal rectangular features and accuracy improvement using combination kernel of various sizes
作者:
Highlights:
•
摘要
This paper proposes a view independent face detection method based on horizontal rectangular features, and accuracy improvement by combining kernels of various sizes. Since the view changes of faces induce large variation in appearance in the horizontal direction, local kernels are applied to horizontal rectangular regions to model such appearance changes. Local kernels are integrated by summation, and then used as a summation kernel for support vector machine (SVM). View independence is shown to be realized by the integration of local horizontal rectangular kernels. However, in general, local kernels (features) of various sizes have different similarity measures, such as detailed and rough similarity, and thus their error patterns are different. If the local and global kernels are combined well, the generalization ability is improved. This research demonstrates the comparative effectiveness of combining the global kernel and local kernels of various sizes as a summation kernel for SVM against use of only the global kernel, only the combination of local kernels and Adaboost with SVMs with a kind of local kernel.
论文关键词:Combination kernel,Summation kernel,Local kernel,View independence,Horizontal rectangular features,Face detection,Support vector machine
论文评审过程:Received 9 August 2007, Revised 6 August 2008, Accepted 10 August 2008, Available online 19 August 2008.
论文官网地址:https://doi.org/10.1016/j.patcog.2008.08.013