Threshold-optimized decision-level fusion and its application to biometrics
作者:
Highlights:
•
摘要
Fusion is a popular practice to increase the reliability of biometric verification. In this paper, we propose an optimal fusion scheme at decision level by the AND or OR rule, based on optimizing matching score thresholds. The proposed fusion scheme will always give an improvement in the Neyman–Pearson sense over the component classifiers that are fused. The theory of the threshold-optimized decision-level fusion is presented, and the applications are discussed. Fusion experiments are done on the FRGC database which contains 2D texture data and 3D shape data. The proposed decision fusion improves the system performance, in a way comparable to or better than the conventional score-level fusion. It is noteworthy that in practice, the threshold-optimized decision-level fusion by the OR rule is especially useful in presence of outliers.
论文关键词:Fusion,Matching score level,Decision level,Threshold-optimized decision-level fusion
论文评审过程:Received 4 December 2007, Revised 11 September 2008, Accepted 17 September 2008, Available online 22 October 2008.
论文官网地址:https://doi.org/10.1016/j.patcog.2008.09.036