A narrow band graph partitioning method for skin lesion segmentation
作者:
Highlights:
•
摘要
Accurate skin lesion segmentation is critical for automated early skin cancer detection and diagnosis. In this paper, we present a novel multi-modal skin lesion segmentation method based on region fusion and narrow band energy graph partitioning. The proposed method can handle challenging characteristics of skin lesions, such as topological changes, weak or false edges, and asymmetry. Extensive testing demonstrated that in this method complex contours are detected correctly while topological changes of evolving curves are managed naturally. The accuracy of the method was quantified using a lesion similarity measure and lesion segmentation error ratio, Our results were validated using a large set of epiluminescence microscopy (ELM) images acquired using cross-polarization ELM and side-transillumination ELM. Our findings demonstrate that the new method can achieve improved robustness and better overall performance compared to other state-of-the-art segmentation methods.
论文关键词:Automatic skin lesion segmentation,Melanoma detection,Border detection,Active contour,Snake,Narrow band energy
论文评审过程:Received 15 January 2008, Revised 7 September 2008, Accepted 9 September 2008, Available online 2 October 2008.
论文官网地址:https://doi.org/10.1016/j.patcog.2008.09.006