Iris quality assessment and bi-orthogonal wavelet based encoding for recognition

作者:

Highlights:

摘要

Iris recognition has been demonstrated to be an efficient technology for personal identification. In this work, methods to perform iris encoding using bi-orthogonal wavelets and directional bi-orthogonal filters are proposed and compared. All the iris images are enhanced using the wavelet domain in-band de-noising method. This method is shown to improve the iris segmentation results. A framework to assess the iris image quality based on occlusion, contrast, focus and angular deformation is introduced and used as part of a novel adaptive matching technique based on the assessed iris image quality. Adaptive matching presents improved performance when compared against the Hamming distance method. Four different databases are used to analyze the system performance. The first two databases include popular CASIA and high resolution University of Bath databases. Results obtained for these databases compare with results from the literature, in terms of speed as well as accuracy. The other two databases have challenging off-angle (WVU database) and uncontrolled (Clarkson database) iris images and are used to assess the limits of system performance. Best results are achieved for directional bi-orthogonal filter based encoding technique combined with the adaptive matching method with EER values of 0.07%, 0.15%, 0.81% and 1.29% for the four databases, which reflect highly competent performance and high correlation with the quality of the iris images.

论文关键词:Iris recognition,Bi-orthogonal wavelets,Directional filters,Automatic segmentation,Adaptive matching,In-band enhancement,Iris quality assessment,Off-axis iris images,Uncontrolled iris capturing,Receiver operating characteristics

论文评审过程:Received 24 January 2008, Revised 14 October 2008, Accepted 5 January 2009, Available online 10 January 2009.

论文官网地址:https://doi.org/10.1016/j.patcog.2009.01.004