Run-hierarchical structure of digital lines with irrational slopes in terms of continued fractions and the Gauss map

作者:

Highlights:

摘要

We study relations between digital lines and continued fractions. The main result is a parsimonious description of the construction of the digital line based only on the elements of the continued fraction representing its slope and containing only simple integer computations. The description reflects the hierarchy of digitization runs, which raises the possibility of dividing digital lines into equivalence classes depending on the continued fraction expansions of their slopes. Our work is confined to irrational slopes since, to our knowledge, there exists no run-hierarchical and continued fraction based description for these, in contrast to rational slopes which have been extensively examined. The description is exact (it does not use approximations by rationals). Examples of lines with irrational slopes and with very simple digitization patterns are presented. These include both slopes with periodic and non-periodic continued fraction expansions, i.e. both quadratic surds and other irrationals. We also derive the connection between the Gauss map and the digitization parameters introduced by the author in 2007.

论文关键词:Digital geometry,Digital line,Irrational slope,Continued fraction,Quadratic surd,Gauss map

论文评审过程:Received 25 June 2008, Revised 5 November 2008, Accepted 10 November 2008, Available online 19 November 2008.

论文官网地址:https://doi.org/10.1016/j.patcog.2008.11.005