Shape feature extraction and description based on tensor scale
作者:
Highlights:
•
摘要
Tensor scale is a morphometric parameter that unifies the representation of local structure thickness, orientation, and anisotropy, which can be used in several computer vision and image processing tasks. In this article, we exploit this concept for binary images and propose a shape salience detector and a shape descriptor—Tensor Scale Descriptor with Influence Zones. It also introduces a robust method to compute tensor scale, using a graph-based approach—the Image Foresting Transform. Experimental results are provided, showing the effectiveness of the proposed methods, when compared to other relevant methods, such as Beam Angle Statistics and Contour Salience Descriptor, with regard to their use in content-based image retrieval tasks.
论文关键词:Shape analysis,Image processing,Tensor scale,Image Foresting Transform,Shape description,Shape saliences,Content-based image retrieval
论文评审过程:Received 12 April 2008, Revised 16 June 2009, Accepted 23 June 2009, Available online 1 July 2009.
论文官网地址:https://doi.org/10.1016/j.patcog.2009.06.012