Defect detection of uneven brightness in low-contrast images using basis image representation
作者:
Highlights:
•
摘要
In this paper, we propose a machine vision approach for detecting local irregular brightness in low-contrast surface images and, especially, focus on mura (brightness non-uniformity) defects in liquid crystal display (LCD) panels. A mura defect embedded in a low-contrast surface image shows no distinct intensity from its surrounding region, and even worse, the sensed image may also present uneven illumination on the surface. All these make the mura defect detection in low-contrast surface images extremely difficult.A set of basis images derived from defect-free surface images are used to represent the general appearance of a clear surface. An image to be inspected is then constructed as a linear combination of the basis images, and the coefficients of the combination form the feature vector for discriminating mura defects from clear surfaces. In order to find minimum number of basis images for efficient and effective representation, the basis images are designed such that they are both statistically independent and spatially exclusive. An independent component analysis-based model that finds both the maximum negentropy for statistical independency and minimum spatial correlation for spatial redundancy is proposed to extract the representative basis images. Experimental results have shown that the proposed method can effectively detect various mura defects in low-contrast LCD panel images.
论文关键词:Defect detection,Surface inspection,Basis image representation,Independent component analysis,Particle swarm optimization
论文评审过程:Received 19 February 2008, Revised 15 June 2009, Accepted 5 September 2009, Available online 12 September 2009.
论文官网地址:https://doi.org/10.1016/j.patcog.2009.09.006