Learning state machine-based string edit kernels

作者:

Highlights:

摘要

During the past few years, several works have been done to derive string kernels from probability distributions. For instance, the Fisher kernel uses a generative model M (e.g. a hidden Markov model) and compares two strings according to how they are generated by M. On the other hand, the marginalized kernels allow the computation of the joint similarity between two instances by summing conditional probabilities. In this paper, we adapt this approach to edit distance-based conditional distributions and we present a way to learn a new string edit kernel. We show that the practical computation of such a kernel between two strings x and x′ built from an alphabet Σ requires (i) to learn edit probabilities in the form of the parameters of a stochastic state machine and (ii) to calculate an infinite sum over Σ* by resorting to the intersection of probabilistic automata as done for rational kernels. We show on a handwritten character recognition task that our new kernel outperforms not only the state of the art string kernels and string edit kernels but also the standard edit distance used by a neighborhood-based classifier.

论文关键词:String kernel,Marginalized kernel,Learned edit distance

论文评审过程:Received 22 May 2009, Revised 5 November 2009, Accepted 7 December 2009, Available online 16 December 2009.

论文官网地址:https://doi.org/10.1016/j.patcog.2009.12.008