Infrared gait recognition based on wavelet transform and support vector machine
作者:
Highlights:
•
摘要
To detect human body and remove noises from complex background, illumination variations and objects, the infrared thermal imaging was applied to collect gait video and an infrared thermal gait database was established in this paper. Multi-variables gait feature was extracted according to a novel method combining integral model and simplified model. Also the wavelet transform, invariant moments and skeleton theory were used to extract gait features. The support vector machine was employed to classify gaits. This proposed method was applied to the infrared gait database and achieved 78%–91% for the probability of correct recognition. The recognition rates were insensitive for the items of holding ball and loading package. However, there was significant influence for the item of wearing heavy coat. The infrared thermal imaging was potential for better description of human body moving within image sequences.
论文关键词:Gait recognition,Infrared thermal imaging,Wavelet transform,Support vector machine,Feature extraction
论文评审过程:Received 14 July 2008, Revised 26 January 2010, Accepted 23 March 2010, Available online 27 March 2010.
论文官网地址:https://doi.org/10.1016/j.patcog.2010.03.011