Features extraction from hand images based on new detection operators
作者:
Highlights:
•
摘要
Human hand shape features extraction from image frame sequences is one of the key steps in human hand 2D/3D tracking system and human hand shape recognition system. In order to satisfy the need of human hand tracking in real time, a fast and accurate method for acquirement of edge features from human hand images without consideration of hand over face is put forward in this paper. The proposed approach is composed of two steps, the coarse location phase (CLP) and the refined location phase (RLP) from coarseness to refinement. In the phase of CLP, the hand contour is approximately described by a polygon with concave and convex, an approach to obtaining hand shape polygon using locating points and locating lines is meticulously discussed. Then, a coarse location (CL) algorithm for extraction of interested hand shape features, such as contour, fingertips, roots of fingers, joints and the intersection of knuckle on different fingers, is proposed. In the phase of RLP, a multi-scale approach is introduced into our study to refine the features obtained by the CL algorithm. By means of defining the response strength of different types of features, a refined location (RL) algorithm is proposed. The major contribution of this paper is that the novel detection operators for features of hand images are presented in the above two steps, which have been successfully applied to our 3D hand shape tracking system and 2D hand shape recognition system. A number of comparative studies with real images and online videos demonstrate that the proposed method can extract the three defined human hand image features with high accuracy and high speed.
论文关键词:Hand shape features extraction,Multi-scale space,Human hand tracking,Hand shape polygon,Hand gesture recognition
论文评审过程:Received 29 November 2009, Revised 23 May 2010, Accepted 7 August 2010, Available online 26 August 2010.
论文官网地址:https://doi.org/10.1016/j.patcog.2010.08.007