A novel hierarchical fingerprint matching approach

作者:

Highlights:

摘要

Fingerprint matching is an important and essential step in automated fingerprint recognition systems (AFRSs). The noise and distortion of captured fingerprints and the inaccurate of extracted features make fingerprint matching a very difficult problem. With the advent of high-resolution fingerprint imaging techniques and the increasing demand for high security, sweat pores have been recently attracting increasing attention in automatic fingerprint recognition. Therefore, this paper takes fingerprint pore matching as an example to show the robustness of our proposed matching method to the errors caused by the fingerprint representation. This method directly matches pores in fingerprints by adopting a coarse-to-fine strategy. In the coarse matching step, a tangent distance and sparse representation-based matching method (denoted as TD-Sparse) is proposed to compare pores in the template and test fingerprint images and establish one-to-many pore correspondences between them. The proposed TD-Sparse method is robust to noise and distortions in fingerprint images. In the fine matching step, false pore correspondences are further excluded by a weighted RANdom SAmple Consensus (WRANSAC) algorithm in which the weights of pore correspondences are determined based on the dis-similarity between the pores in the correspondences. The experimental results on two databases of high-resolution fingerprints demonstrate that the proposed method can achieve much higher recognition accuracy compared with other state-of-the-art pore matching methods.

论文关键词:Fingerprint matching,Tangent distance,Sparse representation,TD-Sparse,Weighted RANdom SAmple Consensus (WRANSAC)

论文评审过程:Received 8 October 2010, Revised 27 January 2011, Accepted 9 February 2011, Available online 16 February 2011.

论文官网地址:https://doi.org/10.1016/j.patcog.2011.02.010