Wavelet kernel learning
作者:
Highlights:
•
摘要
This paper addresses the problem of optimal feature extraction from a wavelet representation. Our work aims at building features by selecting wavelet coefficients resulting from signal or image decomposition on an adapted wavelet basis. For this purpose, we jointly learn in a kernelized large-margin context the wavelet shape as well as the appropriate scale and translation of the wavelets, hence the name “wavelet kernel learning”. This problem is posed as a multiple kernel learning problem, where the number of kernels can be very large. For solving such a problem, we introduce a novel multiple kernel learning algorithm based on active constraints methods. We furthermore propose some variants of this algorithm that can produce approximate solutions more efficiently. Empirical analysis show that our active constraint MKL algorithm achieves state-of-the art efficiency. When used for wavelet kernel learning, our experimental results show that the approaches we propose are competitive with respect to the state-of-the-art on brain–computer interface and Brodatz texture datasets.
论文关键词:Wavelet,Multiple kernel learning,SVM,Quadratic mirror filter
论文评审过程:Received 18 August 2010, Revised 3 February 2011, Accepted 5 March 2011, Available online 21 March 2011.
论文官网地址:https://doi.org/10.1016/j.patcog.2011.03.006