Quadratic nonnegative matrix factorization

作者:

Highlights:

摘要

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), where some factorizing matrices occur twice in the approximation. We demonstrate QNMF solutions to four potential pattern recognition problems in graph partitioning, two-way clustering, estimating hidden Markov chains, and graph matching. We derive multiplicative algorithms that monotonically decrease the approximation error under a variety of measures. We also present extensions in which one of the factorizing matrices is constrained to be orthogonal or stochastic. Empirical studies show that for certain application scenarios, QNMF is more advantageous than other existing nonnegative matrix factorization methods.

论文关键词:Nonnegative matrix factorization,Multiplicative update,Stochasticity,Orthogonality,Clustering,Graph partitioning,Hidden Markov chain model,Graph matching

论文评审过程:Received 23 February 2011, Revised 27 September 2011, Accepted 21 October 2011, Available online 29 October 2011.

论文官网地址:https://doi.org/10.1016/j.patcog.2011.10.014