Incremental face recognition for large-scale social network services
作者:
Highlights:
•
摘要
Due to the rapid growth of social network services such as Facebook and Twitter, incorporation of face recognition in these large-scale web services is attracting much attention in both academia and industry. The major problem in such applications is to deal efficiently with the growing number of samples as well as local appearance variations caused by diverse environments for the millions of users over time. In this paper, we focus on developing an incremental face recognition method for Twitter application. Particularly, a data-independent feature extraction method is proposed via binarization of a Gabor filter. Subsequently, the dimension of our Gabor representation is reduced considering various orientations at different grid positions. Finally, an incremental neural network is applied to learn the reduced Gabor features. We apply our method to a novel application which notifies new photograph uploading to related users without having their ID being identified. Our extensive experiments show that the proposed algorithm significantly outperforms several incremental face recognition methods with a dramatic reduction in computational speed. This shows the suitability of the proposed method for a large-scale web service with millions of users.
论文关键词:Face recognition,Social network service,Incremental learning,Gabor filter,Neural network
论文评审过程:Received 13 April 2011, Revised 25 December 2011, Accepted 2 February 2012, Available online 16 February 2012.
论文官网地址:https://doi.org/10.1016/j.patcog.2012.02.002