Arbitrary body segmentation in static images

作者:

Highlights:

摘要

In this paper, a novel method for segmenting arbitrary human body in static images is proposed. With the body probability map obtained by the pictorial structure model, we develop a superpixel based EM-like algorithm to refine the map, which can then serve as the seeds of graph cuts optimization. To better obtain the final segmentation, we propose a novel ℓ1 based graph cuts algorithm, which uses the sparse coding to construct the initialized graph and calculates the terminal links (t-links) and neighborhood links (n-links) simultaneously from the constructed graph. By employing this ℓ1 based graph cuts, we can effectively and efficiently segment the human body from static images. The experiments on the publicly available challenging datasets demonstrate that our method outperforms many state-of-the-art methods on human body segmentation.

论文关键词:Pictorial structure,Superpixel based EM algorithm,ℓ1 based graph cuts

论文评审过程:Received 11 July 2011, Revised 15 March 2012, Accepted 17 March 2012, Available online 27 March 2012.

论文官网地址:https://doi.org/10.1016/j.patcog.2012.03.011