Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach

作者:

Highlights:

摘要

A single click ensemble segmentation (SCES) approach based on an existing “Click & Grow” algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76%, respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated.

论文关键词:Image features,Delineation,Lung tumor,Lesion,CT,Region growing,Ensemble segmentation

论文评审过程:Received 6 February 2012, Revised 4 September 2012, Accepted 3 October 2012, Available online 11 October 2012.

论文官网地址:https://doi.org/10.1016/j.patcog.2012.10.005