A comparative study on illumination preprocessing in face recognition

作者:

Highlights:

摘要

Illumination preprocessing is an effective and efficient approach in handling lighting variations for face recognition. Despite much attention to face illumination preprocessing, there is seldom systemic comparative study on existing approaches that presents fascinating insights and conclusions in how to design better illumination preprocessing methods. To fill this vacancy, we provide a comparative study of 12 representative illumination preprocessing methods (HE, LT, GIC, DGD, LoG, SSR, GHP, SQI, LDCT, LTV, LN and TT) from two novel perspectives: (1) localization for holistic approach and (2) integration of large-scale and small-scale feature bands. Experiments on public face databases (YaleBExt, CMU-PIE, CAS-PEAL and FRGC V2.0) with illumination variations suggest that localization for holistic illumination preprocessing methods (HE, GIC, LTV and TT) further improves the performance. Integration of large-scale and small-scale feature bands for reflectance field estimation based illumination preprocessing approaches (SSR, GHP, SQI, LDCT, LTV and TT) is also found helpful for illumination-insensitive face recognition.

论文关键词:Face recognition,Illumination-insensitive,Illumination preprocessing,Comparative study,Holistic approach,Localized approach,Band integration

论文评审过程:Received 22 February 2012, Revised 6 November 2012, Accepted 21 November 2012, Available online 1 December 2012.

论文官网地址:https://doi.org/10.1016/j.patcog.2012.11.022